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SUMMARY

The present papsr sevaluates the shear buckling stresses of
rectangular flat plates with slmply supported edses more accurately
than previous work on this problem. Both symmetric (odd number
of buckles) and antisymmetric (even number of buckles) patterns
were considered. A curve is presented from which the critical
stresses may be obitained when the dimensions of the plate are
known.

TIVTRCODUCTTION

In refersence 1 Timoshenko presents a solution for the buckling
gtresses of simply supported rectangular flet plates in shear.
Timoshenko considered only the squations which permitted a buckle
pattern symmetric about the midpoint of the plate. This limitation
led to a small error in the critical strese in several cages in
which the goverming buckle pattern was antisymmetric instoad of
symmetric.

The buckling stresses have been determined mcre correctly than
in referenco 1 by considering both the symmetric and the antisym-
nmetric buckle pabterms. Through the use of the matrix iteration
method described in reference 2 and by a proper choice of the terms
in the series representing the deflection, more accurate results
were obtainod. The theoretical anslysis glven in the appendix is
a brief summsry of the derivetion given in rsfeorcnce 1.

SYMBOLS

T critical shear stress
k shear-stress coefficient which depends on length-width ratio =
8 of the plate b
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a length of plate

b width of platé

D fléxural gtiffness of plate -~§§£L———~
lE(i - pe)

E Young's modulus for materlal

t thickness of plate

11 Poigson's ratio for materisl

Llmnp g integers

w deflection of plate in radlal directlon

X, ¥ axeslof reference

- apq, aaj_‘j numerical coefficlents

RESULTS AND DISCUSSION

The critical shesr stress for a rectangular flat plate with
gimply supported edges 18 given by the equation

k%n?D

T =

b2t

Curves are presented in figure 1 glving two values of the shear-
Btress coefficient k; for each value of length-wldth ratlo

from 1 to 4. These two values of ky correspond to buckling into

an odd number of buckles (symmetric buckling) and into an even
number of buckles (sntisymmetric buckling). Because a plate
buckles into the buckle pattern which requives the least load, the
solid-line curve for any glven length-wldth rablo represecntes the
shear~gtress coefficient that corresponds to the governing
buckling load. The computed values of k; from which these

curves wore drawn are glven in table 1. In addlition, table 1
contalng calculated values of dsflectlon-functlion coefficlents
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from which buckling configurations can be drawn for each length-
width ratio considered.

In figure 2 buckling configurations are shown for length-width
ratios of 1.5 and &.5 to illustrate the symmetric and antisymetric
types of buckls patterm,respectively. An equation for each of the
buckling configuretions was obtained by substituting into equa-
tion (3) of the appendix the values of the deflection-function
coefficients given in table 1.

The values given in reference 1 for the shear-stress coeffi-
clent lie sllghtly above the values of the curve for symmetric
buckling shown in figure 1 of the present paper (maximum deviation
about 1 percent). The meximum error in the wesults of refercnce 1,
vwhich amounte to about & percent sbove thoe results of the present
baper, occurs in the range of antisymmetric buckling.

CONCLUDING REMARKS

From a consideration of both symmetric and anbisymmstric
buckle patterns, the shear buckling stressss of rectengular flst
plates with simply supported edges were more corrvectly evaluated
then in previous work wherein only symmetric buckle patterns wers
considered. Through the use of the matrix itecration method and
by a proper choice of the terms in the serics roprosenting the
deflection, more accurate results wore obtained.

Lengley Memorisl Asromautical Laboratory
National Advisory Committoe for Asronautics
Langley Flold, Va., October 25, 1946
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APPENDIX
THEORETICAL SOLUITON

The critlcal stresses are determined on the basis of the
principle that during buckling the elastic-strain enerzy stored
in a structurs is equal to the work done by the applied load. For
a rectangular flat plate loaded in shear this equality can be '
written (reference 1)

b opalse  p\2
2 I (é_lr+§-l? —E(l-p.) Bwaw <aaw\-} dx dy
2 ¥ )

do | .,Bxa dy" Bx By X 537
b a
= Tt :al: g—‘-’ dx dy (1)
0 Yo ox o¥

The coordinate system is shown in figure 3. ZEquation (1) can be
revritten 1n bterms of the nondlmensional shear-stress coefficient
ag follows:

b z .
r : ! Py Py - - BEW >F w 2
—— ......é. - ;_(l - u) a
o z,‘o {\Bx dy dx> oy°

] Eks(ff WAL o sy =0 (2)

whers
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The procedure used in solving equation (2) is to subsbitute
Por w a function of x and y +that represcnts as closely aos
possible tho buckling conflguration and satisfies the conditions
at the edges. For any buckle pabtern where tho value of w
is 0 at 211 the edgos, the integral of the term with tho cceffi-
cient =2(1 - u) can be shown to vanish through tho use of Groen's
theorem. (See refercnce 3.) If a serios of torms with arbitravy
coefficlents is uscd to represent w, then the coefficients way
be determincd by the Raylelgh-Ritz meothod.

A genoral form for the deflecticn w satlsfying the bowndary
conditions is

= o
'\ mnx nxy

v = a 8in ~— gin —

V=) o — sin = (3)
m=1 n=1

If this oxpression for w is substituted in equa-tion (2) tho
following equation 1s obbtalnod:

z;_- syl

wherec m+ p &nd n+ q are odd numbors.

The coefficients apn must be choson to make the valus of ks

& minimm. The minimization of k with respeocht to cach fpn

¥esults in the set of homogsneous linear squations represcntod by
the following equation:
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vhere
m= l, 2, 3, . . .
n=1 2,3 «+.

end m+p and n + g are odd numbera.

Bach of the equations represented by squation (5) is asso-
clated with a speciflic pair of values of m and n. Slnce m + p
and n+ q are both odd, (m + p + n + g) must be even. If m+ n
ig even, p + q must also be even; if m+ n is odd, p + ¢ nmust
also be odd. Tach of the homogoneous linear equations (5) csn
therefore involve only coefficients ay for which 1 + J is
elther odd or even. The set of equatioﬂs (5) can therefors be
divided into two independent groups which can be solved seperatsly,
one group consisting of egquations in which 1 + J is odd aend the
other group consisting of equations in which 1 % J 18 even. The
set of equations in which 1 + ) i1s even corresponds to symmetric
buckling, and the set in which 1 + J is 0d4d corresponds to anti-
symetric buckling. Ten equations in ten wlmowns were solved
for k, for each type of buckling (symmetric and antisymmetric)

by a matrix iteration method described in reference 2. The equa=
tions chosen for each particular valus of a/b should contain
deflection-function coefficlents that give the lowest value of kg

for either type of buckling. (See reference 2.) Tho deflection~
function coefficients for several values of a/b are given in
table 1.

A represecntative determinant for a group of equations in
which 1 + J 1is even 1s
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m=l, n=3 | O N,
m=2, n=2 | r .k

g 5
m=3, n=1}| O 0

m=l, =5} 0 O

m=2, n=b ; —

i

m=3, n=3} O 0

m=5, n=1 | O 0

m=3, =5 {0 O

where

(@]

o

M

15

20

63

833

[{eRTEN)
\ N IOy

D

35

33

72
35

82

&i®

&l

Nl

63

72
35

Mz

40
27

120
1h7

851

835

3|4

M35
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At a length-width ratio of 1 the lowest valus of k, that
satisfles this determinant 1s leas than the lowest value of ke

obtained from any tenth-order determinant in which 1 + J is
odd. A representative determinant for a group of equations in
which 1 + J is odd 1s

812 %21 %3 832 &y &y3 A5 &g 85, ag3

m=l, n=2 | M, -;f -;:‘ 0 -% % 0 -g-g 0 -3—%
m=2, nel -;t My, O % 0 0 -Z—g— 0 -2-3- 0
m=2, n=3 35*- 0 Mg 'ZTE 0 0 %’- 0 -E—g-
w=3, n=2 { O % ~§§ My -;? 73-;- 0 -g- 0 -;-‘
m=lt, n=l -35- 0 0 ,$ M, O _2_43 0 }2_._'?
m=l, n=3 s 0 0 Z o u 2 0 £

25 35 Th T3 21
sl L R NI A B -
m=6, n=1 1315 0 0 -—;— 0 0 -% M -%
=t 5ok 0 & R 0 ok owE
=6, n=3 %?—5- 0 0 -;- 0 0 -33-‘,-‘?- 0 ~,3(—$-9 Mg
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where

M = e 3[%12 + nE(%)Q]E

5,5

At & length-width ratic of 2.5 the lowest value of kB that
gatisfies this determinent is less than the loweqt value of ks
obtained from any tenth-order determinant in which 1 + J 1s even.
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TABIE 1

SHEAR-OTRESE COEFFICIERTS AND IEFLECTION-FUNCIION CORFFICIERTS

- PR VARIOUS LENGTH-WIDTH RATTOS Off PLATE

[An eguation for the buckling configwratien for each length-width retio can be obtainsd by
aubstituting the valuss of the deflection-function coefficients into equation {3) of the
appendix. Values of the soefflcients not glven in this table are aseumed to be zm‘b-.]

~t

Shear-stress Deflection-fumotion coeffioients , a;y (relative magnitudes)
Length-| cosfficlent, . -

i | _ ird e , :
afb %v;.j 10;.:13 ayy | 213 ay | a3 a5 | agy a33. oo | 25y | o3 | oy | o > _aée. ary |ag .
1.0 |9.35 |11.63]1.000{-0.070| 0.203} -0.071{~0.005|0.005 | 0.038| 0.003{-0.00k0.005
1.2 |8.00 g.70{1.000| -.053| .290{ -.080 .00k .036 .018_ -.008 0.003{0.006
1.5 |7.07 | 7.97|1.000] -. 30| -.1u7 . .005| ~.o11 .003] .007 ~0.001
2.0 {6.59 | 6.61]1.0%7 -.032 .31;3_ ;.ys -.002} .005( .0hB| -.042] -.010 .ooh.

Lo |s.67 | 5.77]-.153 209} 1.000 ~.088| -.324| -.300 03| .o12|-0.032]0.010
. . I+ odd
f1p | M1 | "3 | "2 | %Rl | fu3 | P | GGl | sk | 963 ) E )

2.5 }6.29 | 6.06}0.198| 1.000|-0.052|~0.316{0.200 0.635 ~0.003 [+0.021|-0.002]0.008

3.0 16.0% | 5.8 .150) 1.000] -, - ~e333 ,qho .028] -.020 005 {-0.006
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Figure 1.- Buckling stresses of a simply supported rectangular plate

in shear.
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(b) Length-width ratio, 2.5; two large buckles (antisymmetric buckling).

Figure 2.- Buckling configurations of simply supported rectangular
flat plates in shear.
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Figure 3.~ Coordinate system for rectangular flat plate.



